Disruption/Delay-Tolerant Networking (DTN) Tutorial

Kevin Fall, PhD Qualcomm*, Inc. kfall@qualcomm.com

http://WWW.DTNRG.ORG

Nov 30, 2011 / GFIS 201 / Seoul, South Korea (* this material originally created prior to author's affiliation with Qualcomm)

What is DTN?

- Network/protocol architecture (in the Internet TCP/IP sense)
 - Not "where do I deploy routers and switches" sense
- Can use TCP/IP for transport, but doesn't have to
- o Some tenets
 - Tolerate very long end-to-end delays and disruption
 - Support more than one (simultaneously-operating) name space
 - Use store-carry-forward (data can be physically moved) of objects
 - Understand that channel and object security are different
- An R&D area
 - Mostly in the government sector so far
 - As an IRTF group, leverages IETF processes & procedures

Outline

• Introduction: The Internet and Challenged Networks

• The DTN Architecture

o DTN People & Projects

o Discussion

GFIS 2011 -- Seoul, S. Korea

What are Challenged Networks?

o Unusual

- Containing features or requirements a networking architecture designer would find surprising or difficult to reason about
- o Challenged
 - An operating environment making communications difficult
- Examples: mobile, power-limited, far-away nodes communicating over heterogeneous, poorly performing, intermittently-available links

RFC1149 : A Challenged Internet

- "...encapsulation of IP datagrams in avian carriers" (i.e. birds, esp carrier pigeons)
- Delivery of datagram:
 - Printed on scroll of paper in hexadecimal
 - Paper affixed to AC by duct tape
 - On receipt, process is reversed, paper is scanned in via OCR

Implementation of RFC1149

• See http://www.blug.linux.no/rfc1149/

6

GFIS 2011 -- Seoul, S. Korea

Ping Results

So What?

- Primary use for the Internet today is content upload/access
- Primary device for accessing information = mobile (by 2015)
- o Mobile is a bit different than the "wired" Internet model
 - Performance of connectivity varies significantly over time
 - Latency can be high and asymmetric
 - Different end devices have various levels of "services" / capabilities
 - Capacity is, ultimately, limited
- It's worth looking at network architectures to support all this
 Without losing our investment in mobile data and TCP/IP
 - interest le cara ana re

Internet Architecture

- o Key design points
 - Packet abstraction is good
 - Fully-connected routing graph
 - Hierarchical address assignment
 - End-to-end reliability dumb network
 - Management at the application layer
 - Security and accounting secondary (at ends)

Internet is a Packet Network

o Internet Protocol

- Abstract IP datagram
 - Fragmentation function adapts its size
- Globally-unique IP addresses
 - Addresses are hierarchical (prefix-based) to save routing table space and update size
- Store-and-forward
 - Short-term storage of a few packets
 - Drop on overload (typically "drop tail")

Internet is Fully-Connected

o Internet Protocol

- Routing
 - Implemented as an application
 - Finds "best" (single) using prefixes
 - There should be lots of paths available, so pick one
 - No (transport-layer or higher) state in routers (just per-destination next-hops)
- Drop on failure
 - "No route to host" failure of the abstraction due to failure of the environmental or operational assumptions

Common Hierarchical Addresses

o Internet Protocol

- Addresses
 - o every interface has a 32-bit [unique] address
 - share a prefix with other nearby machines
 - subnets
 - CIDR and aggregation
- Consequences
 - o too few addresses -> IPv6 and NAT
 - o mobility -> indirection
- IPv6 doesn't change this much
 - o But changes enough to not work with IPv4

Reliability is End-to-End

• Fate sharing

- If one endpoint dies, the other might as well too
 - Consistent with connection abstraction
 - Simple network infrastructure, sophisticated end hosts
 - o End hosts should behave

 E2e re-transmission is an appropriate method to combat packet loss

Management at Application Layer

- Control is in-band
 - Subject to same anomalies as regular data
 - Subject to attacks
- Management capabilities depend on which apps are installed/enabled
 - A limited *de-facto* standard set exist
- Management is the last thing to be enabled (e.g., after connectivity)

Security and Accounting

- Security is an "add-on" to Internet
 - Identity is not secured
 - Not implemented at one particular layer
 - Traffic management (filtering) vs end-toend authentication
 - Filtering limited/fragile, authentication may be burdensome
 - Middlebox problems for e2e protocols
- o Accounting
 - Difficult to account for and pay for use
 - Often a distributed data fusion problem

Operational Assumptions

- o E2E path doesn't have really long delay
 - Reacting to flow control in ¹/₂-RTT effective
 - Reacting to congestion in 1-RTT effective
 - Connections open in at most a few seconds
- E2E path doesn't have really big, small, or asymmetric bandwidth
- Re-ordering might happen, but not much
- o End stations don't cheat
- Links not very lossy (< 1%)
- Connectivity exists through *some* path
 - even MANET routing usually assumes this

Operational Assumptions (cont)

- Hosts are security principals
 - And (historically) rarely lie about who they are
 - And can be equipped with keys 'easily enough'
- Nodes don't move around or change addresses
 - assign addresses in hierarchy
 - thought to be important for scalability
- In-network storage is limited
 - not appropriate to store things long-term in network
- End-to-end principle
 - routers are `flakier' than end hosts

Non-Internet-Like Networks

- Random and predictable node mobility
 - Mobile devices (phones, tablets, cars, planes)
 - Military/tactical networks (clusters meeting clusters)
 - Mobile routers w/disconnection (e.g. ZebraNet)
- Big delays, low bandwidth (high cost)
 - Store-and-forward satellites
 - exotic links (NASA DSN, underwater acoustics)
- Big delays, high bandwidth
 - Data Mules: buses, mail trucks, carts, etc.

Defining Challenged Networks...

- o Intermittent/Scheduled/Opportunistic Links
 - Scheduled transfers can save power and help congestion; scheduling for exotic links
- High Error Rates / Low Usable Capacity
 - RF noise, light or acoustic interference, LPI/LPD concerns
- Very Large Delays
 - Natural prop delay could be seconds to minutes
 - If disconnected, may be (effectively) much longer
- o Different Network Architectures
 - Different addressing / delivery abstractions
 - (specialized networks might never run IP)

Internet for Challenged Networks?

- What happens when one or more of the operational assumptions doesn't hold (strongly)?
 - Applications break / communication impossible or unavailable
 - Applications have intolerable performance
 - System is not secure
- Let's be more specific...

IP Routing May Not Work

• End-to-end path may not exist

- Lack of many redundant links [there are exceptions]
- Path may not be discoverable [e.g. fast oscillations]
- Traditional routing assumes at least one path exists, fails otherwise

Algorithm solves wrong problem

- Wireless broadcast media is not an edge in a graph
- Objective function does not match requirements
 - Different traffic types wish to optimize different criteria
 - Physical properties may be relevant (e.g. power)

IP Routing May Not Work [2]

- Routing protocol performs poorly in environment
 - Topology discovery dominates capacity
 - Incompatible topology assumptions
 - OSPF broadcast model for MANETs
 - Insufficient host resources
 - o routing table size in sensor networks
 - Assumptions made of underlying protocols
 - BGP's use of TCP

What about UDP?

- UDP preserves application-specified boundaries
 - May result in frequent fragmentation
 - Permits out-of-order delivery (no sequencing)
- Delay insensitive [no timers]
 - No provision for loss recovery
- o No control loops
 - No flow/congestion control or loss recovery
- o Works in simplex/bcast/mcast environment
 - no connections

What about TCP? Reliable in-order delivery streams Delay sensitive [6 timers]: connection establishment, retransmit, persist, delayed-ACK, FIN-WAIT, (keepalive) Three control loops:

- Flow and congestion control, loss recovery
- o Requires duplex-capable environment
 - Connection establishment and tear-down

What about DNS?

• Names and the DNS:

- Names: Administrative assignment (global hierarchy)
- DNS Distributed Lookup Service
 - Name service frequently located near target
 - Requires ~1RTT or more to perform first mapping
 - Caching helps after that
 - Often a reverse-lookup is also required
- Zone and dynamic updates
- DNS Resolution Failure results in effective application failure or large application delays

What about Applications?

- Most use TCP... ouch
- Detecting failures
 - Many applications have an inactivity timeout used to initiate failure-handling
 - Handling failures often means giving up
- o Chattiness
 - Many applications implement layer 7 protocols that require lots of round-trip exchanges
 - Extreme cases drive conversation to stop-and-wait
- Robustness to long delays
 - Most apps aren't prepared to continue effectively after re-start or other network disruption
 - And its even worse now with VPNs, NATs, etc.

FTP: An example application

Applications that are interactive exacerbate channel access problems

27

What to Do?

- Some problems surmountable using Internet/IP
 - `cover up' the link problems using PEPs
 - Mostly used at "edges," not so much for transit
- Performance Enhancing Proxies (PEPs):
 - Do "something" in the data stream causing endpoint (TCP/IP) systems to not notice there are problems
 - Lots of issues with transparency- security, operation with asymmetric routing, etc.
 - no really standardized proxy architecture
- Some environments mix heterogeneous technology and *never* have an e2e path

Outline

Introduction: The Internet and Challenged Networks **The DTN Architecture**DTN People & Projects

o Discussion

Delay-Tolerant Networking Architecture Goals

- Support <u>interoperability</u> across 'radically heterogeneous' networks
 - Handle differing packet formats
 - Handle differing naming schemes
 - Handle differing temporal assumptions
- o Tolerate <u>delay and disruption</u>
 - Acceptable performance in high loss/delay/ error/disconnected environments
 - Decent performance for low loss/delay/ errors

DTN Architectural Components

- Flexible naming scheme based on URIs
- o Store-Carry-Forward Routing Framework
- Extensible, arbitrary length messages
- o Endpoint migration ("custody transfer")
- Data-oriented security model

Naming using URIs

• URIs (RFC3986) – URLs and URNs

Reserved strings and characters:

o : / ? # [] @ (generic delims)

0 ! \$ & ' () * + , ; = (sub-delims)

Generic format

URI = scheme ":" hier-part ["?" query] ["#" fragment]
hier-part = "//" authority path-abempty

| path-absolute | path-rootless | path-empty Authority = [userinfo "@"] host [":" port] Path-abempty (begins with / or is empty) Path-absolute (begins with / but not //) Path-rootless (begins with a segment) Path-empty (empty)

o Example: URN:ISBN:0-395-36341-1

URIs in DTN • URIs can encode any existing or future network name & address format • Can use them to identify endpoints (EIDS): multicast, anycast, unicast, security principals Late binding of EID permits naming flexibility and robustness to change: EID "looked up" only when necessary during delivery so can change over long delivery delay contrast with Internet lookup-before-use DNS/IP

o Example: dtn:gw.dtn/myapp?a=3

DTN PDUs: Bundles

- IPN idea: "bundle" together all necessary ancillary data to complete work unit [ADU]
- Large ADUs allow for network to assign scheduling / buffer resources
 - Proactive fragmentation (e.g. for multiple paths)
- Bundle delivery is mostly best-effort
 - Hard to provide e2e reliability over disrupted paths
 - Apps can request ACKs and/or "custody transfer"
- Extensible format using *blocks* supports experimentation and evolution

Bundles and Blocks

- Bundles are a linear collection of blocks (like IPv6 extension headers)
 - First is a required primary block
 - Followed by (extensible set of) other blocks
- Block format shares initial version or ID field
 - Remaining fields are generally variable
 More difficult processing but greater flexibility

Primary Block Format

Version (1 byte)	Bundle Pro	ocessing Control Flags (SDNV)	SDNVs: variable-length values					
	Block Leng	th (SDNV)						
Destination Scher	me Offset (SDNV)	Destination SSP Offset (SDNV)						
Source Scheme Offset (SDNV)		Source SSP Offset (SDNV)						
Report-To Scheme Offset (SDNV)		Report-To SSP Offset (SDNV)	Offsets					
Custodian Scheme Offset (SDNV)		Custodian SSP Offset (SDNV)	re-use					
Creation Timestamp (SDNV)								
Cre	eation Timestamp Sec	quence Number (SDNV)	Timestamp					
	Lifetime	(SDNV)	combines real					
	Dictionary Le	ngth (SDNV)	sequence					
	Dictionary (/byte array)						
	Fragment Offset	(SDNV, optional)						
A	pplication data unit le	ength (SDNV, optional)	TTL is real-time offset from creation					
GFIS 2011 Seoul, S. Korea 36								

Self-Delimiting Numeric Values (SDNVS)

- Variable-length encoding format
 - Avoids hazards of fixed-length fields
 - Represents non-negative integers
 - 1 bit per byte of overhead (plus overflows)
 See RFC6256
- o High-order bit of each byte: 0 ="end"
 - $\blacksquare 1 \rightarrow \underline{0}000001$
 - $\blacksquare 127 \rightarrow \underline{0}1111111$
 - $\blacksquare 128 \rightarrow \underline{1}000001 \ \underline{0}000000$
 - **32767** \rightarrow <u>1</u>1111111 <u>0</u>1111111

Synchronized Time

- DTN assumes roughly synchronized time
- o Four drivers for this choice
 - Most DTN applications care about time (e.g., when some value is sensed)
 - Space/time DTN routing requires time knowledge
 - Management tasks much easier
 - Time typically provided elsewhere anyhow

DTN Routing

- DTN is an overlay routing network
 - Nodes (fixed or moving) have storage
 - Bundles are routed among DTN nodes
 - Bundles may be fragmented
- DTN routing is a little unusual
 - Multiple paths can be used in parallel
 - Multiple transport encapsulations can be used in parallel
 - Thus, DTN routing involves not just "next hop" but also "next protocol"

Next Hop/Protocol in DTN

- In IP, routing function R(d) gives N (next hop)
 - d is IP destination, N is IP next hop
 - d and N are IP addresses
 - R is a longest matching prefix compare
- In DTN, R(d) gives a matrix M
 - R(d): "best" string match returns at least (N_i, P_i, L_i)
 - N_i is next-hop DTN EID, P_i is next-layer down protocol encap, L_i is next layer down address
 - Multiple matching entries can split (fragment) or replicate bundles

Example: next-hop/protocol

DTN Custody Transfer

- A (optional) transfer of delivery responsibility from one DTN node to others along delivery path(s)
- Avoids problems of poor e2e performance for high-delay lossy networks
 - Frees sender's buffers (relatively) early
 - Useful for low-capability sources
- o Custodian nodes in `good places'

E.g. servers in data centers

DTN and Mobility

- Mobility patterns induce a set of connectivity opportunities [contacts]
- Contacts have a time-varying bandwidth and delay
- o Definition of a contact:
 - (e₁, e₂, t_s, t_e, C(t), D(t))
 - e₁, e₂: endpoint identifiers
 - t_s, t_e: contact start and end time (at e₁)
 - C(t) : continuous capacity function

D(t): continuous delay function

GFIS 2011 -- Seoul, S. Korea

Example Graph Abstraction

 bike (data mule) predictable high capacity

Geo satellite

- continuous moderate capacity
- dial-up link
 - on-demand low capacity

Connectivity: Village 1 – Mule

GFIS 2011 -- Seoul, S. Korea

DTN Security

- DTN security protects data being transferred and access to transport
- Authentication, confidentiality, and data integrity are integral
- o But the environment is a challenge
 - Can't assume servers are available
 - Link resources can be precious
 - Nodes may move into hostile locations
 - Routing can involve delays and loops
 - Nodes have heterogeneous capabilities

Security Sources/Destinations

- Bundle sender/receiver distinguished from security sender/receiver (for service k)
 - Heterogeneous capabilities (e.g. crypto, keying)
 - Different security needs based on topology

DTN Threats

- Other layers (non-DTN nodes)
- Unauthorized resource consumption
- o Denial of service
- o Confidentiality and integrity attacks
- Traffic storms
- Free-riding on legitimate traffic

DTN Security Blocks

- Integrity and Authentication
 - BAB bundle authentication block
 - Hop-by-hop between forwarders
 - o Indicates upstream router & data is ok
 - PIB payload integrity block
 - "End-to-end" between PIB sources/dests
 - Indicates payload and sender is ok
- o Confidentiality
 - PCB payload confidentiality block
 - Supports encryption of payload
 - o "End-to-end" between PCB sources/dests

Abstract Security Blocks

Туре	Flags (SDNV)	EID reference list (composite, if present)			
Length	(SDNV)	Ciphersuite ID (SDNV)			
Ciphersuite F	lags (SDNV)	Correlator (SDNV, if present)			
Param Length (SDNV)	Ciphe	ersuite param data			
Result Length (SDNV)	Se	curity result data			

Bit	#: 6	5	4	3	2	1	0
Ciphersuite Flags:	reser	ved	src	dest	parm	corr	res

Confidentiality Details

- Typically, security result contains a random bundle encryption key (BEK)
- o Payload encrypted "in-place"
 - Payload block cleartext \rightarrow cyphertext
 - Fragmentation and custody ACKs ok
- o Some crypto algorithms support this
 - Counter-mode encryption generally
 - GCM (CTR+Galois authentication) [NIST] specifically

Security Policy Minimums

- O Under what conditions recvd bundle is
 - Forwarded, reqd to have valid BAB/PIB/ PCB, given a BAB/PIB/PCB,
 - (e.g. dropped) if policy violated
- o Information adequacy
 - Is information included in the BAB/PIB considered adequate to authenticate?

IRTF Documents & IANA Allocations

Published RFCs

- V. Cerf et al, Delay Tolerant Networking Architecture", RFC 4838, Apr 2007
- K. Scott, S. Burleigh, "Bundle Protocol Specification", RFC 5050, Nov 2007
- S. Farrell et al, "Licklider Transmission Protocol Security Extensions," RFC 5327, Sep 2008
- M. Ramadas et al, "Licklider Transmission Protocol Specification," RFC 5326, Sep 2008
- S. Burleigh et al, "Licklider Transmission Protocol Motivation," RFC 5325, Sep 2008
- M. Blanchet, "Delay-Tolerant Networking Bundle Protocol IANA Registries," RFC 6255, May 2011
- W. Eddy, E. Davies, "Using Self-Delimiting Numeric Values in Protocols," RFC 6256, May 2011
- S. Symington, S. Farrell, H. Weiss, P. Lovell, "Bundle Security Protocol Specification," RFC 6257, May 2011
- S. Symington, "Delay-Tolerant Networking Metadata Extension Block," RFC 6258, May 2011
- S. Symington, "Delay-Tolerant Networking Previous-Hop Insertion Block," RFC 6259, May 2011
- S. Burleigh, "Compressed Bundle Header Encoding (CBHE)," RFC 6260, May 2011 IANA Allocations
- "dtn:" scheme
- TCP / UDP Internet Convergence Layers (CLs) Port 4556
- not to be confused with Port 2445 ("DTN1")

IRTF Drafts

- o Drafts (alive)
 - draft-blanchet-dtnrg-bp-application-framework
 - draft-dtnrg-ltp-cbhe-registries
 - draft-sims-dtnrg-bpmib
 - draft-softgear-dtnrg-eprophet
- Drafts (dead, but might come back)
 - draft-irtf-dtnrg-ltpcl
 - draft-irtf-dtnrg-udpcl
 - draft-eddy-dtnrg-checksum
 - draft-eddy-dtnrg-eid
 - draft-fall-dtnrg-schl
 - draft-farrell-dtnrg-alt-time
 - draft-farrell-dtnrg-bpq
 - draft-irtf-dtnrg-dtn-uri-scheme
 - draft-irtf-dtnrg-ipnd
 - draft-irtf-dtnrg-prophet
 - draft-irtf-dtnrg-sec-overview
 - draft-irtf-dtnrg-tcp-clayer
 - draft-mcmahon-dtnrg-dtn-edp
 - see <u>https://datatracker.ietf.org</u> for others

Availability

All code is open source and freely available

- http://www.dtnrg.org/wiki/Code
- DTN2, ION, POSTELLATION, IBR-DTN, DASM
- Mercurial repository
 - o hg clone http://www.dtnrg.org/hg/oasys
 - o hg clone http://www.dtnrg.org/hg/DTN2

o DTN mailing lists

- <u>http://irtf.org/mailman/listinfo/dtn-interest</u>
- http://irtf.org/mailman/listinfo/dtn-users

Outline

Introduction: The Internet and Challenged Networks
The DTN Architecture **DTN People & Projects**Discussion

GFIS 2011 -- Seoul, S. Korea

DTN People & Projects

- DTNRG (IRTF) various folks
- Trinity College Dublin (Ireland) Stephen Farrell & Alex McMahon
- Aalto University (Finland) Jörg Ott
- NASA JPL, GRC (USA) Scott Burleigh, Will Ivantik
- MITRE (USA) Bob Durst & Keith Scott
- Google (USA) Vint Cerf
- DARPA WNaN Program (USA) see DARPA web site
- TU Braunschweig (Germany)
- Viagenie (Canada) Marc Blanchet
- o BBN/Raytheon
- Ohio University (USA) Hans Cruse

Relevant Links

- O DTNRG:
 - <u>http://www.dtnrg.org</u>
- DARPA WNaN Program:
 - http://www.darpa.mil/Our_Work/STO/Programs/ Wireless_Network_after_Next_%28WNAN%29.aspx
- o U Mass Diverse Outdoor Mobile Environment
 - http://prisms.cs.umass.edu/dome
- Tetherless Computing:
 - http://blizzard.cs.uwaterloo.ca
- EDIFY Research Group:
 - <u>http://</u>edify.cse.lehigh.edu/
- o Technology and Infrastructure for Emerging Regions:
 - <u>http://tier.cs.berkeley.edu/</u>
- o DTN Group @ TKK Netlab:
 - <u>http://www.netlab.hut.fi/~jo/dtn/index.html</u>
- N4C:
 - http://www.n4c.eu

GFIS 2011 -- Seoul, S. Korea

Outline

Introduction: The Internet and Challenged Networks
The DTN Architecture
DTN Reference Implementation
DTN People & Projects
Discussion

Thanks http://www.dtnrg.org kfall@qualcomm.com

GFIS 2011 -- Seoul, S. Korea